If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+9x+18=0
a = -3; b = 9; c = +18;
Δ = b2-4ac
Δ = 92-4·(-3)·18
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{33}}{2*-3}=\frac{-9-3\sqrt{33}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{33}}{2*-3}=\frac{-9+3\sqrt{33}}{-6} $
| 13.6-4x=1-x | | 2.92w+5=4.7w-7.6 | | x^2-x/6-2=0 | | 5x-10=-106-3x | | 6x+3=5-4x | | -1/2x^2+6x+17=0 | | 86=7x+x-2 | | 8–9g=-7 | | 7(b-2);b=8 | | (3x+2)(2x-7)=140 | | 93=4x+7x-6 | | 6+(w−10)=5 | | 6x-2+2x=94 | | -1/4x^2+7x+1=0 | | .25(x-13)=7 | | 8=f-5/7 | | 20=5+z+7+z | | x2=25/49 | | 2+18/2x=5 | | 60|2s+5|=64 | | -1/2x^2+20x+2=0 | | x+3/6=3/9 | | 2x/2+4=8 | | (x-3)^2=-64 | | 4x+3+x=2+5x+1 | | -1/2x^2+2x+2=0 | | 128+c=3,012 | | 15=6+6+z | | |n-10|=4 | | 2x-3/5x+1=0 | | -1/2x^2+6x+2=0 | | 3x+15=18. |